skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grant, Nina"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Climate change poses significant threats to global agriculture, impacting food quantity, quality, and safety. The world is far from meeting crucial climate targets, prompting the exploration of alternative strategies such as stratospheric aerosol intervention (SAI) to reduce the impacts. This study investigates the potential impacts of SAI on rice and wheat production in India, a nation highly vulnerable to climate change given its substantial dependence on agriculture. We compare the results from the Assessing Responses and Impacts of Solar climate intervention on the Earth system with Stratospheric Aerosol Injection‐1.5°C (ARISE‐SAI‐1.5) experiment, which aims to keep global average surface air temperatures at 1.5°C above preindustrial in the Shared Socioeconomic Pathway 2‐4.5 (SSP2‐4.5) global warming scenario. Yield results show ARISE‐SAI‐1.5 leads to higher production for rainfed rice and wheat. We use 10 agroclimatic indices during the vegetative, reproductive, and ripening stages to evaluate these yield changes. ARISE‐SAI‐1.5 benefits rainfed wheat yields the most, compared to rice, due to its ability to prevent rising winter and spring temperatures while increasing wheat season precipitation. For rice, SSP2‐4.5 leads to many more warm extremes than the control period during all three growth stages and may cause a delay in the monsoon. ARISE‐SAI‐1.5 largely preserves monsoon rainfall, improving yields for rainfed rice in most regions. Even without the use of SAI, adaptation strategies such as adjusting planting dates could offer partial relief under SSP2‐4.5 if it is feasible to adjust established rice‐wheat cropping systems. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026